Add like
Add dislike
Add to saved papers

Cerium Doping-Induced Enrichment of Ni 3 S 4  Phase for Boosting Oxygen Evolution Reaction.

ChemSusChem 2024 March 26
The development of low-cost transition metal compounds with high-performance for efficient oxygen evolution reaction (OER) is of great significance in promoting the development of electrocatalysis. In this study, a Ce-doped Ni3S4 catalyst (Ce0.2-Ni3S4) was synthesized through a one-step solvothermal method, where the doped rare earth element Ce induced the transformation of NiS to Ni3S4. The Ce0.2-Ni3S4 catalyst exhibited excellent OER performance in 1 M KOH. At a current density of 10 mA cm-2, it showed a low overpotential of 230 mV and a low Tafel slope of 52.39 mV dec-1. Long-term OER tests at the same potential lasted for 24 h without significant loss of current density. This work introduces a novel method of Ce element doping for modifying transition metal sulfides, providing new insights into the effective utilization of rare earth elements in the field of electrochemistry. It creates more chances for the progress of highly efficient catalysts for efficient OER, contributing to the advancement of electrocatalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app