Journal Article
Review
Add like
Add dislike
Add to saved papers

Synthetic approaches and clinical application of small-molecule inhibitors of sodium-dependent glucose transporters 2 for the treatment of type 2 diabetes mellitus.

Sodium-dependent glucose transporters 2 (SGLT2) inhibitors are a class of small-molecule drugs that have gained significant attention in recent years for their potential clinical applications in the treatment of type 2 diabetes mellitus (T2DM). These inhibitors function by obstructing the kidneys' ability to reabsorb glucose, resulting in a rise in the excretion of glucose in urine (UGE) and subsequently lowering blood glucose levels. Several SGLT2 inhibitors, such as Dapagliflozin, Canagliflozin, and Empagliflozin, have been approved by regulatory authorities and are currently available for clinical use. These inhibitors have shown notable enhancements in managing blood sugar levels, reducing body weight, and lowering blood pressure in individuals with T2DM. Additionally, they have exhibited potential advantages in decreasing the likelihood of cardiovascular incidents and renal complications among this group of patients. This review article focuses on the synthesis and clinical application of small-molecule SGLT2 inhibitors, which have provided a new therapeutic approach for the management of T2DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app