Add like
Add dislike
Add to saved papers

Determining the recurrence rate of premature ventricular complexes and idiopathic ventricular tachycardia after radiofrequency catheter ablation with the help of designing a machine-learning model.

Regenerative Therapy 2024 December
Ventricular arrhythmias increase cardiovascular morbidity and mortality. Recurrent PVCs and IVT are generally considered benign in the absence of structural heart abnormalities. Artificial intelligence is a rapidly growing field. In recent years, medical professionals have shown great interest in the potential use of ML, an integral part of AI, in various disciplines, including diagnostic applications, decision-making, prognostic stratification, and solving complex pathophysiological aspects of diseases from these data at extraordinary complexity, scale, and acquisition rate. The aim of this study was to design an ML model to predict the probability of PVC and IVT recurrence after RF ablation. Data of patients were collected and manipulated using traditional analysis and various artificial intelligence models, namely MLP, Gradient Boosting Machines, Random Forest, and Logistic Regression. Hypertension, male sex, and the use of non-irrigate catheters were associated with less freedom from arrhythmia. All these results were obtained through traditional analytic methods, and according to AI, none of the variables had a clear effect on the recurrence of arrhythmia. Each AI model presents unique strengths and weaknesses, and further optimization and fine-tuning of these models are necessary to increase their clinical utility. By expanding the dataset, improved predictions can be fostered to ultimately increase the clinical utility of AI in predicting PVC erosion outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app