Add like
Add dislike
Add to saved papers

Identification and sex expression profiles of candidate chemosensory genes from Atherigona orientalis via the antennae and leg transcriptome analysis.

Atherigona orientalis Schiner (1868) is an acknowledged agricultural pest owing to its feeding habits and breeding locations. This insect is a tropical and subtropical pest in fruits and vegetables, in which >50 varieties of fruits and vegetables in 26 families, such as Capsicum annuum, Lycopersicon esculentum, and Cucumis melo have been attacked. Moreover, A. orientalis may also develop in rotten crops and feces or insect carcasses, which are also considered one kind of sanitary pest and medical insect. At present, the invasion ranges of A. orientalis are still increasing and more preventive and management measures are to be processed. To gain a better understanding of the molecular mechanisms involved in olfactory reception in A. orientalis, the transcriptome of male and female antennae and legs was systematically analyzed. In total, 131 chemosensory-related genes, including 63 odorant receptors (ORs), 20 gustatory receptors (GRs), 18 ionotropic receptors (IRs), 27 odorant binding proteins (OBPs), 1 chemosensory protein (CSP), and 2 sensory neuron membrane proteins (SNMPs), were identified. The analysis focused on obtaining expression information of candidate olfactory genes at the transcriptomic level by examining the differentially expressed genes (DEGs) in all samples. Totally, 41 DEGs were identified between male antennae (MA) and female antennae (FA), including 32 ORs, 5 OBPs, 1 IR, 2 GRs and 1 SNMP. In MA versus male legs (ML), 78 DEGs were identified (45 ORs, 18 OBPs, 6 GRs, 6 IRs, 1 CSP and 2 SNMPs). In FA and female legs (FL), 96 DEGs were identified (51 ORs, 21 OBPs, 9 GRs, 12 IRs, 1 CSP and 2 SNMPs). For ML and FL, 3 DEGs were identified, including 2 ORs and 1 SNMP. Our results supplement valuable insights for future research on the chemoreception mechanisms in A. orientalis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app