Add like
Add dislike
Add to saved papers

An Improved k-Nearest Neighbor Algorithm for Recognition and Classification of Thyroid Nodules.

OBJECTIVES: To complete the task of automatic recognition and classification of thyroid nodules and solve the problem of high classification error rates when the samples are imbalanced.

METHODS: An improved k-nearest neighbor (KNN) algorithm is proposed and a method for automatic thyroid nodule classification based on the improved KNN algorithm is established. In the improved KNN algorithm, we consider not only the number of class labels for various classes of data in KNNs, but also the corresponding weights. And we use the Minkowski distance measure instead of the Euclidean distance measure.

RESULTS: A total of 508 ultrasound images of thyroid nodules, including 415 benign nodules and 93 malignant nodules, were used in the paper. Experimental results show the improved KNN has 0.872549 accuracy, 0.867347 precision, 1 recall, and 0.928962 F1-score. At the same time, we also considered the influence of different distance weights, the value of k, different distance measures on the classification results.

CONCLUSIONS: A comparison result shows that our method has a better performance than the traditional KNN and other classical machine learning methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app