Journal Article
Review
Add like
Add dislike
Add to saved papers

The Molecular Mechanisms Involved in the Hypertrophic Scars Post-Burn Injury.

Scar formation is a normal response to skin injuries. During the scar-remodeling phase, scar tissue is usually replaced with normal, functional tissue. However, after deep burn injuries, the scar tissue may persist and lead to contractures around joints, a condition known as hypertrophic scar tissue. Unfortunately, current treatment options for hypertrophic scars, such as surgery and pressure garments, often fail to prevent their reappearance. One of the primary challenges in treating hypertrophic scars is a lack of knowledge about the molecular mechanisms underlying their formation. In this review, we critically analyze studies that have attempted to uncover the molecular mechanisms behind hypertrophic scar formation after severe burn injuries, as well as clinical trials conducted to treat post-burn hypertrophic scars. We found that most clinical trials used pressure garments, laser treatments, steroids, and proliferative inhibitors for hypertrophic scars, with outcomes measured using subjective scar scales. However, fundamental research using human burn injury biopsies has shown that pathways such as Transforming Growth factor β (TGFβ), Phosphatase and tensin homolog (PTEN), and Toll-like receptors (TLRs) could be potentially regulated to reduce scarring. Therefore, we conclude that more testing is necessary to determine the efficacy of these molecular targets in reducing hypertrophic scarring. Specifically, double-blinded clinical trials are needed, where the outcomes can be measured with more robust quantitative molecular parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app