Add like
Add dislike
Add to saved papers

Enhanced interfacial boiling of impacting droplets upon vibratory surfaces.

HYPOTHESIS: Despite the flourishing studies of droplet interfacial boiling, the boiling upon vibratory surfaces, which may cause vigorous liquid-vapor-solid interactions, has rarely been investigated. Enhanced boiling normally can be gained from rapid removal of vapor and disturbance of liquid-vapor interface. We hypothesize that the vibratory surfaces enhance both effects with new intriguing phenomena and thus, attain an enhanced boiling heat transfer.

EXPERIMENTS: We experimentally investigated the impacting fluid dynamics and coupled heat transfer patterns of multiple droplets and a single droplet impinging on still and vibratory surfaces of various materials and different wettability.

FINDINGS: The boiling under vibratory surfaces with increased vibration velocity amplitude and enhanced wettability can be enhanced by 80% in heat transfer coefficient and Nusselt number, which is attributed to several reasons: shortened bubble lifespan, thinner and smaller bubbles, and enhanced disturbances in liquid-vapor interfaces. The vibration also delays the Leidenfrost point when the droplet impacts a descending surface, which shows that the droplet impact moment (vibration phase angle) is particularly crucial. The descending surface releases the generated vapor actively and facilitates liquid-solid contact, thereby delaying the Leidenfrost. From fundamentals to application, this article strengthens our understanding of vibrated interfacial boiling in scenarios closer to multiple natural processes and practical industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app