Add like
Add dislike
Add to saved papers

Verapamil modulates NFAT2 to inhibit tumor growth and potentiates PD1ab immune checkpoint inhibitor therapy in cervical cancer treatment.

PURPOSE: Current evidence suggests a high co-prevalence of hypertension and cervical cancer. Accordingly, blood pressure control is indicated during anti-tumor drug therapy in this patient population. Over the past few years, immunotherapy has made great strides in treating different cancers. However, the role and clinical significance of verapamil as a first-line anti-hypertensive drug during immunotherapy remain poorly understood, emphasizing the need for further studies.

METHODS: Murine cervical cancer models were employed to assess the effect of verapamil monotherapy and combination with PD1ab. Immunohistochemistry was conducted to quantify the abundance of CD8+ T cell and Ki67+ cells. Several in-vitro and in-vivo assays were used to study the effects of verapamil and explore the preliminary mechanism.

RESULTS: Monotherapy with verapamil or PD1ab immune checkpoint inhibitor significantly suppressed the growth of subcutaneously grafted U14 cells in WT BABL/c mice, respectively, with increased survival time of mice. Consistent results were observed in the melanoma model. Furthermore, we substantiated that verapamil significantly impaired tumor proliferation and migration of SiHa human cervical cancer cells in vitro and in vivo. In silico analysis using TCGA data revealed that NFAT2 expression negatively correlated with patient survival. The CCK8 assay revealed that verapamil abrogated the stimulatory effect of NFAT2 after knockdown of NFAT2.

CONCLUSIONS: Our results suggest that verapamil inhibits tumor growth by modulating NFAT2 expression and enhancing tumor immune responses to PD1ab, which can be harnessed for cervical cancer therapy, especially for patients with comorbid hypertension. Indeed, further clinical trials are warranted to increase the robustness of our findings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app