Add like
Add dislike
Add to saved papers

MiR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression.

Bioscience Reports 2023 August 16
MicroRNA-21 (miR-21) plays an anti-apoptotic role following ischemia-reperfusion (I/R) injury (IRI) in vivo; however, its underlying mechanism remains unclear. This study explored the effects of miR-21 and homeodomain interacting protein kinase 3 (HIPK3) on cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R) in vitro. To this end, the rat cardiomyocyte H9C2 cell line was exposed to H/R and the roles of miR-21 and HIPK3 in regulating cell viability and apoptosis were evaluated by cell counting kit-8 assay, terminal-deoxynucleotidyl-transferase -mediated dUTP nick end labeling, and flow cytometry. Immunofluorescence and western blotting were performed to detect the expression/phosphorylation of apoptosis-related proteins. miR-21 expression was measured with quantitative real-time polymerase chain reaction. The putative interaction between miR-21 and HIPK3 was evaluated using the luciferase reporter assay. Our results showed that: (i) miR-21 overexpression or HIPK3 downregulation significantly attenuated H9C2 cells apoptosis after H/R; (ii) suppression of miR-21 expression promoted apoptosis; (iii) miR-21 overexpression inhibited HIPK3 expression; (iv) HIPK3 was the direct and main target of miR-21; (v) miR-21/HIPK3 formed part of a reciprocal, negative feedback loop; and (vi) HIPK3 downregulation decreased FAS-mediated apoptosis by inhibiting the phosphorylation of FADD, which subsequently inhibited the expression of BAX and cleaved caspase-3 and increased the expression of BCL2. Our study indicates that miR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression, which could eventually have important clinical implications for patients with acute myocardial infarction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app