Add like
Add dislike
Add to saved papers

Mathematical Modelling with the Exact Solution of Three Different Bioheat Conduction Models of a Skin Tissue Shocked by Thermoelectrical Effect.

This research deals with the temperature increment and responsiveness of skin tissue to a continuous flow of surface heat induced by a constant-voltage electrical current. The exact analytical solution for the dual-phase-lag (DPL) of bioheat transfer has been obtained. It is used to confine the variables to a limited domain to solve the governing equations. The transition temperature reactions have been measured and investigated. The figures provide a comparison of the Pennes, Tzou models, and Vernotte-Cattaneo models. The numerical results demonstrate the values of the voltage, resistance, electric shock time, and dual-phase-lag time parameters which have significant influences on the distributions of the dynamic and conductive temperature rise through the skin tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app