Add like
Add dislike
Add to saved papers

Lapatinib ditosylate rescues motor deficits in rotenone-intoxicated rats: Potential repurposing of anti-cancer drug as a disease-modifying agent in Parkinson's disease.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits induced by dopaminergic neuronal death in the substantia nigra (SN). Finding a successful neuroprotective therapy is still challenging despite improved knowledge of the etiology of PD and a variety of medications intended to reduce symptoms. Lapatinib (LAP), an FDA-approved anti-cancer medication, has been stated to exert its effect through the modulation of oxidative stress. Furthermore, recent studies display the neuroprotective effects of LAP in epilepsy, encephalomyelitis, and Alzheimer's disease in rodent models through the modulation of oxidative stress and ferroptosis. Nevertheless, it is questionable whether LAP exerts neuroprotective effects in PD. In the current study, administration of 100 mg/kg LAP in rotenone-treated rats for 21 days ameliorates motor impairment, debilitated histopathological alterations, and revived dopaminergic neurons by increasing tyrosine hydroxylase (TH) expression in SN, along with increased dopamine level. LAP remarkably restored the antioxidant defense mechanism system, GPX4/GSH/NRF2 axis, inhibiting oxidative markers, including iron, TfR1, PTGS2, and 4-HNE, along with suppression of p-EGFR/c-SRC/PKCβII/PLC-γ/ACSL-4 pathway. Moreover, LAP modulates HSP90/CDC37 chaperone complex, regulating many key pathological markers of PD, including LRRK2, c-ABL, and α-syn. It is concluded that LAP has neuroprotective effects in PD via modulation of many key parameters implicated in PD pathogenesis. Taken together, the current study offers insights into the potential repositioning of LAP as a disease-modifying drug in PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app