Add like
Add dislike
Add to saved papers

Aptamer-based carbohydrate antigen 125 sensor with molybdenum disulfide functional hybrid materials.

Epithelial ovarian cancer is a malignant tumor of the female reproductive system with insidious symptoms, aggressiveness, risk of metastasis, and high mortality. Carbohydrate antigen 125 (CA125), a standard biomarker for screening epithelial ovarian cancer, can be applied to track cancer progression and treatment response. Here, we constructed an aptamer-based electrochemical biosensor to achieve sensitive detection of CA125. Molybdenum disulfide (MoS2 ) was used as the stable layered substrate, combined with the irregular branched structure of gold nanoflowers (AuNFs) to provide the sensing interface with a large specific surface area by one-step electrodeposition AuNFs@MoS2 . The simplified electrode modification step increased the stability of the electrode while ensuring excellent electrochemical performance and providing many sulfhydryl binding sites. Then, AuNFs@MoS2 /CA125 aptamer/MCH sensor was designed for CA125 detection. Based on AuNFs@MoS2 electrode, CA125 aptamer with sulfhydryl as the sensitive layer was fixed on the electrode by gold sulfur bonds. 6-Mercapto-1-hexanol (MCH) was used to block the electrode and reduce the non-specific adsorption. Finally, DPV analysis was applied for CA125 detection with the range of 0.0001 U/mL to 500 U/mL. Our designed aptamer sensor showed reasonable specificity, reproducibility, and stability. Clinical sample testing also proved the consistency of our sensor with the gold standard in negative/positive judgment. This work demonstrated a novel strategy for integrating nanostructures and biocompatibility to build advanced cancer biomarker sensors with promising applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app