Add like
Add dislike
Add to saved papers

Melatonin protects against ketorolac induced gastric mucosal toxic injuries through molecular mechanism associated with the modulation of Arylakylamine N-Acetyltransferase (AANAT) activity.

Ketorolac tromethamine (KT), is a widely used non-steroidal anti-inflammatory drug (NSAID) for treating moderate to severe pain. However, the use of KT has been restricted due to its highly toxic attributes that lead to severe gastric ulceration and bleeding. The protective effects of exogenous melatonin (MT) has been reported in conditions associated with gastro-intestinal disorders. This study aims at exploring the role of gastric endogenous MT level and it's metabolizing enzyme AANAT, at the onset of ketorolac mediated toxicities in the gastric mucosa. Gastric mucosal damage was induced in experimental rats by oral administration of graded doses of KT, where 50 mg/kg b.w. of KT was observed to incur maximum gastric lesions. However, gastric damages were found to be protected in rats, pre-treated with 60 mg/kg b.w. of MT. Post-sacrifice, mean ulcer index, oxidative status, total melatonin levels and enzyme activities associated with MT biosynthesis and catabolism were estimated. The results reveal that KT decreases AANAT activity with a concomitant decline in endogenous MT level which cumulatively aggravates gastric toxicity. Moreover, exogenous MT administration has been found to be protective in ameliorating this ulcerogenic process in rats, challenged with KT. Biochemical and histo-pathological observations revealed the reduction in oxidative stress level and replenishment of depleted gastric MT levels in MT pre-treated animals, which might be the causative factors in conferring protection to the gastric tissues and residing mitochondria. The results revealed a correlation between depleted gastric MT level and ulcer formation, which unveiled a novel ulcerogenic mechanism. This may bring forth future therapeutic relevance for treating patients with KT mediated acute gastric toxicities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app