Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

Parkinson's disease in a patient with GBA and LRRK2 covariants after acute hypoxic insult: a case report.

BMC Neurology 2023 June 11
BACKGROUND: The glucocerebrosidase (GBA) and leucine-rich repeat kinase 2 (LRRK2) genes are associated with the risk of sporadic Parkinson's disease (PD). As an environmental factor, hypoxic insults may impair dopamine neurons in the substantia nigra and exacerbate PD symptoms. However, covariants of GBA and LRRK2 combined with hypoxic insults in clinical cases of Parkinsonism have not yet been reported.

CASE PRESENTATION: A 69-year-old male patient with PD and his relatives were clinically characterized and sequenced using the whole-exome technique. A novel covariant, c.1448 T > C (p. L483P, rs421016) on GBA and c.691 T > C (p. S231P, rs201332859) on LRRK2 were identified in this patient who first developed bradykinesia and rigidity in the neck at one month after an acute hypoxic insult during mountaineering. The patient presented with a mask-like face, festinating gait, asymmetric bradykinesia, and moderate rigidity. These symptoms were treated with levodopa and pramipexole, resulting in a 65% improvement in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score. These parkinsonian symptoms persisted and developed with hallucinations, constipation, and rapid eye movement sleep behavior disorder. After 4 years, the patient exhibited a wearing-off phenomenon and died from pulmonary infection 8 years after disease onset. His parents, wife, and siblings were not diagnosed with PD, and his son carried p. L483P without Parkinsonism-like symptoms.

CONCLUSIONS: This is a case report of PD after hypoxic insult in a patient carrying a covariant of GBA and LRRK2. This study may help us understand the interaction between genetic and environmental factors in clinical PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app