Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Maximal lateral ligament strain and loading during functional activities: Model-based insights for ankle sprain prevention and rehabilitation.

BACKGROUND: Although it is generally accepted that sports activities present a high risk of lateral ligament injury, the extent to which ligaments are loaded during functional activities is less explored. This is relevant when considering ankle sprain prevention and staged rehabilitation following ligament sprain or reinforcing surgery. Therefore, anterior talofibular ligament, calcaneofibular ligament and posterior talofibular ligament strain and loading were evaluated, based on a newly developed loading index, during movements executed during daily life and rehabilitation.

METHODS: Three-dimensional motion analysis data was acquired in 10 healthy volunteers during eleven different movements and processed using musculoskeletal modelling. Maximal lateral ligament strain and ligament loading, based on an new index accounting for the ankle and subtalar moment magnitude, ligament strain magnitude and duration, were calculated and statistically compared to ligament strain and loading during walking and a reference clinical (talar tilt) test.

FINDINGS: Anterior talofibular, calcaneofibular and posterior talofibular lateral ligament loading were highest during vertical drop jumps, medio-lateral single leg hops and running. Additionally, anterior talofibular loading was high during stair descending, calcaneofibular loading during single leg stance without visual feedback and posterior talofibular loading during anterior single leg hops. During the clinical test, anterior talofibular and calcaneofibular ligament strain were substantially lower than the maximal strain during different movements.

INTERPRETATION: Our results allow classification of exercises according to the ligament loading index and maximal strain, thereby providing objective data to progressively stage ligament loading during rehabilitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app