Add like
Add dislike
Add to saved papers

Dimensional Regulation in Metal-Free Perovskites by Compositional Engineering to Achieve Record Low X-ray Detection Limits.

Utilizing the manipulation of perovskite dimensions has been proven as an effective approach in regulating perovskite properties. Nevertheless, achieving precise control over the dimensions of perovskites within the same system poses a significant challenge. In this study, we introduce a sophisticated method to attain precise dimensional control in metal-free perovskites (MFPs), specifically through the process of octahedron tailoring by compositional engineering. Accordingly, we successfully instigated a transition from HPIP-NH4 I3 ⋅H2 O (3D), HPIP2 -NH4 I5 (2D) and HPIP3 -NH4 I7 (1D) structures. Notably, HPIP2 -NH4 I5 is the first 2D MFP. As anticipated, these perovskites exhibited completely distinct fluorescence and X-ray detection capabilities due to their differing dimensions. Remarkably, the 2D HPIP2 -NH4 I5 device effectively hindered ion migration perpendicular to the 2D layers, achieving the lowest detection limit of 12.2 nGyair s-1 among metal-free single crystals-based detectors. This study expands the dimensionality control strategies for MFPs and introduces, for the first time, the potential of 2D MFPs as high-performance X-ray detectors, thereby enriching the diversity of the MFPs family.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app