Add like
Add dislike
Add to saved papers

Enhancing Thickness Uniformity of Nb 2 O 5 /SiO 2 Multilayers Using Shadow Masks for Flexible Color-Filtering Applications.

Micromachines 2024 April 22
Using a stainless shadow mask combined with a magnetron-ion-assisted deposition (IAD) sputtering system, we investigate the surface morphologies and optical properties of microfilms. Optimal color-filter (CF) coating microfilms with niobium pent-oxide (Nb2 O5 )/silicon dioxide (SiO2 ) multilayers on a hard polycarbonate (HPC) substrate, grown at 85 °C and 50 SCCM oxygen flow, can obtain a fairly uniform thickness (with an average roughness of 0.083 and 0.106 nm respectively for Nb2 O5 and SiO2 films) through all positions. On a flexible HPC substrate with the Nb2 O5 /SiO2 microfilms, meanwhile, the peak transmittances measured in the visible range are 95.70% and 91.47%, respectively, for coatings with and without a shadow mask for this new-tech system. For the optimal CF application with a shadow mask, transmittance on each 100 nm band-pass wavelength is enhanced by 4.04% absolute (blue), 2.96% absolute (green), and 2.12% absolute (red). Moreover, the developed new-tech system not only enhances the quality of the films by achieving smoother and uniform surfaces but also reduces deposition time, thereby improving overall process efficiency. For the with-shadow-mask condition, there is little shift at 50% transmittance (T50%), and high transmittance (~97%) is maintained after high-temperature (200 °C) baking for 12 h. These results are well above the commercial CF standard (larger than 90%) and demonstrate reliability and good durability for flexible optical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app