Add like
Add dislike
Add to saved papers

Levitons in correlated nano-scale systems.

Chaos 2024 April 2
In this short review (written to celebrate David Campbell's 80th birthday), we provide a theoretical description of quantum transport in nanoscale systems in the presence of single-electron excitations generated by Lorentzian voltage drives, termed Levitons. These excitations allow us to realize the analog of quantum optics experiments using electrons instead of photons. Importantly, electrons in condensed matter systems are strongly affected by the presence of different types of non-trivial correlations, with no counterpart in the domain of photonic quantum optics. After providing a short introduction about Levitons in non-interacting systems, we focus on how they operate in the presence of two types of strong electronic correlations in nanoscale systems, such as those arising in the fractional quantum Hall effect or in superconducting systems. Specifically, we consider Levitons in a quantum Hall bar of the fractional quantum Hall effect, pinched by a quantum point contact, where anyons with fractional charge and statistics tunnel between opposite edges. In this case, a Leviton-Leviton interaction can be induced by the strongly correlated background. Concerning the effect of superconducting correlations on Levitons, we show that, in a normal metal system coupled to BCS superconductors, half-integer Levitons minimize the excess noise in the Andreev regime. Interestingly, energy-entangled electron states can be realized on-demand in this type of hybrid setup by exploiting crossed Andreev reflection. The results exposed in this review have potential applications in the context of quantum information and computation with single-electron flying qubits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app