Add like
Add dislike
Add to saved papers

Risk prediction of pulse wave for hypertensive target organ damage based on frequency-domain feature map.

The application of deep learning to the classification of pulse waves in Traditional Chinese Medicine (TCM) related to hypertensive target organ damage (TOD) is hindered by challenges such as low classification accuracy and inadequate generalization performance. To address these challenges, we introduce a lightweight transfer learning model named MobileNetV2SCP. This model transforms time-domain pulse waves into 36-dimensional frequency-domain waveform feature maps and establishes a dedicated pre-training network based on these maps to enhance the learning capability for small samples. To improve global feature correlation, we incorporate a novel fusion attention mechanism (SAS) into the inverted residual structure, along with the utilization of 3 × 3 convolutional layers and BatchNorm layers to mitigate model overfitting. The proposed model is evaluated using cross-validation results from 805 cases of pulse waves associated with hypertensive TOD. The assessment metrics, including Accuracy (92.74 %), F1-score (91.47 %), and Area Under Curve (AUC) (97.12 %), demonstrate superior classification accuracy and generalization performance compared to various state-of-the-art models. Furthermore, this study investigates the correlations between time-domain and frequency-domain features in pulse waves and their classification in hypertensive TOD. It analyzes key factors influencing pulse wave classification, providing valuable insights for the clinical diagnosis of TOD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app