Add like
Add dislike
Add to saved papers

An MRI Radiomics Approach to Predict the Hypercoagulable Status of Gliomas.

Cancers 2024 March 27
Venous thromboembolic events are frequent complications of Glioblastoma Multiforme (GBM) and low-grade gliomas (LGGs). The overexpression of tissue factor (TF) plays an essential role in the local hypercoagulable phenotype that underlies these complications. Our aim was to build an MRI radiomics model for the non-invasive exploration of the hypercoagulable status of LGG/GBM. Radiogenomics data from The Cancer Genome Atlas (TCGA) and REMBRANDT (Repository for molecular BRAin Neoplasia DaTa) cohorts were used. A logistic regression model (Radscore) was built in order to identify the top 20% TF-expressing tumors, considered to be at high thromboembolic risk. The most contributive MRI radiomics features from LGG/GBM linked to high TF were identified in TCGA using Least Absolute Shrinkage and Selection Operator (LASSO) regression. A logistic regression model was built, whose performance was analyzed with ROC in the TCGA/training and REMBRANDT/validation cohorts: AUC = 0.87 [CI95 : 0.81-0.94, p < 0.0001] and AUC = 0.78 [CI95 : 0.56-1.00, p = 0.02], respectively. In agreement with the key role of the coagulation cascade in gliomas, LGG patients with a high Radscore had lower overall and disease-free survival. The Radscore was linked to the presence of specific genomic alterations, the composition of the tumor coagulome and the tumor immune infiltrate. Our findings suggest that a non-invasive assessment of the hypercoagulable status of LGG/GBM is possible with MRI radiomics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app