Add like
Add dislike
Add to saved papers

Developmental programming: Testosterone excess masculinizes female pancreatic transcriptome and function in sheep.

Hyperandrogenic disorders, such as polycystic ovary syndrome, are often associated with metabolic disruptions such as insulin resistance and hyperinsulinemia. Studies in sheep, a precocial model of translational relevance, provide evidence that in utero exposure to excess testosterone during days 30-90 of gestation (the sexually dimorphic window where males naturally experience elevated androgens) programs insulin resistance and hyperinsulinemia in female offspring. Extending earlier findings that adverse effects of testosterone excess are evident in fetal day 90 pancreas, the end of testosterone treatment, the present study provides evidence that transcriptomic and phenotypic effects of in utero testosterone excess on female pancreas persist after cessation of treatment, suggesting lasting organizational changes, and induce a male-like phenotype in female pancreas. These findings demonstrate that the female pancreas is susceptible to programmed masculinization during the sexually dimorphic window of fetal development and shed light on underlying connections between hyperandrogenism and metabolic homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app