Add like
Add dislike
Add to saved papers

Biomass ash as soil fertilizers: Supercharging biomass accumulation by shifting auxin distribution.

Chemosphere 2024 April 5
Growing quantities of biomass ashes (phyto-ashs) are currently produced worldwide due to the increasing biomass consumption in energy applications. Utilization of phyto-ash in agriculture is environmentally friendly solution. However, mechanisms involving the coordination of carbon metabolism and distribution in plants and soil amendment are not well known. In the present study, tobacco plants were chemically-fertilized with or without 2‰ phyto-ash addition. The control had sole chemical fertilizer; for two phyto-ash treatments, the one (T1) received comparable levels of nitrogen, phophorus, and potassium from phyto-ash and fertilizers as the control and another (T2) had 2‰ of phyto-ash and the same rates of fertilizers as the control. Compared with the control, phyto-ash addition improved the soil pH from 5.94 to about 6.35; T2 treatment enhanced soil available potassium by 30% but no difference of other elements was recorded among three treatments. Importantly, bacterial (but not fungal) communities were significantly enriched by phyto-ash addition, with the rank of richness as: T2 > T1 > control. Consistent with amelioration of soil properties, phyto-ash promoted plant growth through enlarged leaf area and photosynthesis and induced outgrowth of lateral roots (LRs). Interestingly, increased auxin content was recorded in 2nd and 3rd leaves and roots under phyto-ash application, also with the rank level as T2 > T1 > control, paralleling with higher transcripts of auxin synthetic genes in the topmost leaf and stronger [3 H]IAA activity under phyto-ash addition. Furthermore, exogenous application of analog exogenous auxin (NAA) restored leaf area, photosynthesis and LR outgrowth to the similar level as T2 treatment; conversely, application of auxin transport inhibitor (NPA) under T2 treatment retarded leaf and root development. We demonstrated that phyto-ash addition improved soil properties and thus facilitated carbon balance within plants and biomass accumulation in which shifting auxin distribution plays an important role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app