Add like
Add dislike
Add to saved papers

Tumor-associated macrophages impair NK cell IFN-γ production and contribute to tumor progression in clear cell renal cell carcinoma.

Tumor-associated macrophages (TAM) are abundant in several tumor types and usually correlate with poor prognosis. Previously, we demonstrated that anti-inflammatory macrophages (M2) inhibit NK cell effector functions. Here, we explored the impact of TAM on NK cells in the context of clear-cell renal cell carcinoma (ccRCC). Bioinformatics analysis revealed that an exhausted NK cell signature strongly correlated with an M2 signature. Analysis of TAM from human ccRCC samples confirmed that they exhibited an M2-skewed phenotype and inhibited IFN-γ production by NK cells. Moreover, human M0 macrophages cultured with conditioned media from ccRCC cell lines generated macrophages with an M2-skewed phenotype (TAM-like), which alike TAM, displayed suppressive activity on NK cells. Moreover, TAM depletion in the mouse Renca ccRCC model resulted in delayed tumor growth and reduced volume, accompanied by an increased frequency of IFN-γ-producing tumor-infiltrating NK cells that displayed heightened expression of T-bet and NKG2D and reduced expression of the exhaustion-associated co-inhibitory molecules PD-1 and TIM-3. Therefore, in ccRCC, the tumor microenvironment polarizes TAM toward an immunosuppressive profile that promotes tumor-infiltrating NK cell dysfunction, contributing to tumor progression. In addition, immunotherapy strategies targeting TAM may result in NK cell reinvigoration, thereby counteracting tumor progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app