Add like
Add dislike
Add to saved papers

Evaluating the influence of various friction stir processing strategies on surface integrity of hybrid nanocomposite Al6061.

Scientific Reports 2024 April 6
To fundamentally investigate the influence of different friction stir processing (FSP) strategies, namely raster, spiral, and parallel in various passes on the surface integrity of hybrid aluminum nanocomposites reinforced by titanium oxide (TiO2 ), silicon carbide (SiC), and zirconium oxide (ZrO2 ) nanoparticles, various examinations were conducted. The surface integrity, comprising microstructural characterization, elemental composition, surface topography, roughness, waviness, and microhardness was studied by different analyses, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), optical microscopy (OM), atomic force microscopy (AFM), and Vickers microhardness machine in different zones. Results demonstrated that surface integrity and quality are dependent on the type of FSP strategy. SEM images revealed that a homogeneous distribution of the nanoparticles in the matrix is obtainable by the parallel and raster FSP strategies. Roughness and waviness measurements illustrated that the surface topography of the hybrid nanocomposite was symmetrical and improved by raster strategy and TiO2  + ZrO2 nanoparticle reinforcement. Furthermore, the two-pass FSP improved the arithmetic average surface value (Ra ) such that the Ra of two passes decreased by 32.5% compared to a single one. The mean microhardness in the spiral, raster, and parallel pass strategies increased by ~ 45%, 37%, and 31%, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app