Add like
Add dislike
Add to saved papers

Electrochemiluminescent properties of carbon nitride nanoflowers and their application to the detection of melatonin in foods.

Food Chemistry 2024 March 29
Carbon nitride nanoflower materials (CNNFs) modified electrodes were prepared and used as electrochemiluminescence (ECL) sensors for the sensitive detection of melatonin (MT) in food. The luminescence intensity of CNNFs is increased by 4.6 times compared with bulk g-C3 N4 . In addition, the effect of dissolved oxygen on the material was eliminated, and the stability of ECL intensity of CNNFs was improved. Under the optimal experimental conditions, there is a good linear relationship between the ECL intensity ratio and logCMT in a concentration range of 2.0 × 10-11 -1.0 × 10-6  mol/L, and the detection limit is 6.2 × 10-13  mol/L. This experiment has been successfully used for the detection of MT in rice, black rice, oats, apples, bananas, grapes, carrots, tomatoes, cucumbers, bread, and beers. The results are consistent with those obtained by high-performance liquid chromatography (HPLC). Therefore, this sensor is a sensitive and effective method for detecting MT content in food.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app