Add like
Add dislike
Add to saved papers

GABA and Glx predict EEG responses of visual sensitivity in autism.

The mechanisms underlying atypical sensory processing in autism remain to be elucidated, but research points toward a role of the glutamatergic/GABAergic balance. To investigate the potential relationships between visual sensitivity and its molecular correlates in autism, we combined data from electroencephalography (EEG) and magnetic resonance spectroscopy (MRS) studies. Twenty autistic adults and sixteen neurotypical adults (NT) participated in both an EEG study assessing visual sensitivity (Sapey-Triomphe et al., Autism Research, 2023) and in an MRS study measuring Glx and GABA+ concentrations in the occipital cortex (Sapey-Triomphe et al., Molecular Autism, 2021). These studies revealed no group differences in neural detection thresholds or in Glx/GABA levels in the occipital cortex. Neural detection thresholds for contrast and spatial frequency (SF) were determined using fast periodic visual stimulations and neural frequency tagging. In the present study, Glx/GABA+ concentrations in the occipital cortex and neural detection thresholds did not differ between groups. Interestingly, lower Glx/GABA+ ratios were associated with lower contrast detection thresholds and higher SF detection thresholds. These correlations were also significant within the neurotypical and autistic groups. This report suggests that the Glx/GABA balance regulates visual detection thresholds across individuals. In both autistic and NTs, lower Glx/GABA ratios in the occipital cortex allow for better detection of visual inputs at the neural level. This study sheds light on the neurochemical underpinnings of visual sensitivity in autism and warrants further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app