Add like
Add dislike
Add to saved papers

Insight into Cu (II) adsorption on pyrochar and hydrochar resultant from Acacia Senegal waste for wastewater decontamination.

Chemosphere 2024 April 3
Acacia Senegal waste (ASW) is remaining biomass following gum Arabic harvesting and has no use mentioned in the literature as of yet. This study aims to convert ASW into valuable biochar via two comparative thermal and hydrothermal techniques, which include pyrochar ASW at 300 °C (PC ASW300) and hydrochar ASW at 180 °C (HC ASW180), respectively, for Cu (II) adsorption from aqueous solutions. SEM-EDS, FTIR, XRD, and XPS were used to characterize the biochar. Adsorption performance was studied as a function of pH, contact time, and adsorbent concentration. Adsorption kinetics were best fit for a pseudo-second-order model. And thermodynamics studies revealed that Cu (II) on biochar was endothermic, spontaneous, and best fitted to the Langmuir isotherm model. Pyrochar adsorption capacity (31.93 mg g-1 ) was seven times that of hydrochar (5.45 mg g-1 ). ASW treated with phosphorus (PC H3 PO4 and HC H3 PO4 ) prior to the carbonization altered the pore structure and surface functional groups as well (O-P-O, P-CH3 , and P-OH) of biochar. It was found that treating with phosphorous acid increased adsorption capacity to 141.7 mg g-1 and 22.24 mg g-1 for PC H3 PO4 and HC H3 PO4 , respectively. The surface functional groups of biochar resulted from lignin, alkaloids, and polysaccharides combined with Cu (II) during the adsorption process via surface complexation accompanied by π-electron interaction and Cu (II) reduction. These findings shed light on the ASW biochar potential as a new green cost-effective adsorbent and drew an insightful understanding of Cu (II) adsorption performance and mechanism. It is concluded that ASW-derived biochar is highly effective and a promising alternative for Cu (II) decontamination from wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app