Add like
Add dislike
Add to saved papers

The Bach1/HO-1 pathway regulates oxidative stress and contributes to ferroptosis in doxorubicin-induced cardiomyopathy in H9c2 cells and mice.

Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 μM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app