Add like
Add dislike
Add to saved papers

Single-cell sequencing analysis of chronic subdural hematoma cell subpopulations and their potential therapeutic mechanisms.

BACKGROUND: Chronic subdural hematoma (CSDH) is a prevalent form of intracranial haemorrhage encountered in neurosurgical practice, and its incidence has notably risen in recent years. Currently, there is a lack of studies that have comprehensively classified the cells present in hematomas removed during surgery, and their correlation with CSDH recurrence remains elusive. This study aims to analyse the subcellular populations and occupancy levels within peripheral blood.

METHODS: This study analyses the subcellular populations and occupancy levels within peripheral blood and postoperatively removed hematomas by single-cell sequencing and attempts to analyse the effect of different cell occupancies within peripheral blood and intraoperatively removed hematomas on CSDH.

RESULTS: The single-cell sequencing results showed that the cells were classified into 25 clusters by differential gene and UMAP dimensionality reduction clustering analyses and further classified into 17 significant cell populations by cell markers: pDCs, CD8 T cells, CD4 T cells, MigDCs, cDC2s, cDC1s, plasma cells, neutrophils, naive B cells, NK cells, memory B cells, M2 macrophages, CD8 Teffs, CD8 MAIT cells, CD4 Tregs, CD19 B cells, and monocytes. Further research showed that the presence of more cDC2 and M2 macrophages recruited at the focal site in patients with CSDH and the upregulation of the level of T-cell occupancy may be a red flag for further brain damage. ROS, a marker of oxidative stress, was significantly upregulated in cDC2 cells and may mediate the functioning of transcription proteins of inflammatory factors, such as NFκB, which induced T cells' activation. Moreover, cDC2 may regulate M2 macrophage immune infiltration and anti-inflammatory activity by secreting IL1β and binding to M2 macrophage IL1R protein.

CONCLUSION: The detailed classification of cells in the peripheral blood and hematoma site of CSDH patients helps us to understand the mechanism of CSDH generation and the reduction in the probability of recurrence by regulating the ratio of cell subpopulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app