Add like
Add dislike
Add to saved papers

Why is Superlubricity of Diamond-Like Carbon Rare at Nanoscale?

Small 2024 March 29
Hydrogenated diamond-like carbon (HDLC) is a promising solid lubricant for its superlubricity which can benefit various industrial applications. While HDLC exhibits notable friction reduction in macroscale tests in inert or reducing environmental conditions, ultralow friction is rarely observed at the nanoscale. This study investigates this rather peculiar dependence of HDLC superlubricity on the contact scale. To attain superlubricity, HDLC requires i) removal of ≈2 nm-thick air-oxidized surface layer and ii) shear-induced transformation of amorphous carbon to highly graphitic and hydrogenated structure. The nanoscale wear depth exceeds the typical thickness of the air-oxidized layer, ruling out the possibility of incomplete removal of the air-oxidized layer. Raman analysis of transfer films indicates that shear-induced graphitization readily occurs at shear stresses lower than or comparable to those in the nanoscale test. Thus, the same is expected to occur at the nanoscale test. However, the graphitic transfer films are not detected in ex-situ analyses after nanoscale friction tests, indicating that the graphitic transfer films are pushed out of the nanoscale contact area due to the instability of transfer films within a small contact area. Combining all these observations, this study concludes the retention of highly graphitic transfer films is crucial to achieving HDLC superlubricity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app