Add like
Add dislike
Add to saved papers

Characterisation of choroid plexus-infiltrating T cells reveals novel therapeutic targets in murine neuropsychiatric lupus.

OBJECTIVE: Diffuse central nervous system manifestations, referred to as neuropsychiatric lupus (NPSLE), are observed in 20-40% of lupus patients and involve complex mechanisms that have not yet been adequately elucidated. In murine NPSLE models, choroid plexus (ChP)-infiltrating T cells have not been fully evaluated as drivers of neuropsychiatric disease.

METHOD: Droplet-based single-cell transcriptomic analysis (single-cell RNA sequencing) and immune T-cell receptor profiling were performed on ChP tissue from MRL/lpr mice, an NPSLE mouse model, at an 'early' and 'late' disease state, to investigate the infiltrating immune cells that accumulate with NPSLE disease progression.

RESULTS: We found 19 unique clusters of stromal and infiltrating cells present in the ChP of NPSLE mice. Higher resolution of the T-cell clusters uncovered multiple T-cell subsets, with increased exhaustion and hypoxia expression profiles. Clonal analysis revealed that the clonal CD8+T cell CDR3 sequence, ASGDALGGYEQY, matched that of a published T-cell receptor sequence with specificity for myelin basic protein. Stromal fibroblasts are likely drivers of T-cell recruitment by upregulating the VCAM signalling pathway. Systemic blockade of VLA-4, the cognate ligand of VCAM, resulted in significant resolution of the ChP immune cell infiltration and attenuation of the depressive phenotype.

CONCLUSION: Our analysis details the dynamic transcriptomic changes associated with murine NPSLE disease progression, and highlights its potential use in identifying prospective lupus brain therapeutic targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app