Add like
Add dislike
Add to saved papers

Carboxymethylcellulose-induced depletion attraction to stabilize high internal phase Pickering emulsions for the elderly: 3D printing and β-carotene delivery.

Food Chemistry 2024 March 16
In this study, a carboxymethylcellulose (CMC) induced depletion attraction was developed to stabilize high internal phase Pickering emulsions (HIPPEs) as age-friendly 3D printing inks. The results demonstrated that depletion force induced the adsorption of yolk particles at the droplet interface and the formation of osmotic droplet clusters, thereby increasing the stability of HIPPEs. In addition, the rheological properties and nutrient delivery properties of HIPPEs could be adjusted by the mass ratio of yolk/CMC. The HIPPEs stabilized at yolk/CMC mass ratio 20:7.5 showed optimal printability, viscoelastic, structural recovery, and swallowability. HIPPEs have been applied to 3D printing, International Dysphagia Dietary Standardization Initiative (IDDSI) test, and in vitro digestive simulation in the elderly, indicating their attractive appearance, safe swallowability, and enhanced bioaccessibility of β-carotene. Our work provides new ideas for developing age-friendly foods with plasticity and nutrient delivery capacity by depletion attraction stabilizing HIPPEs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app