Add like
Add dislike
Add to saved papers

Propionic acid affects the synaptic architecture of rat hippocampus and prefrontal cortex.

Micron 2024 March 5
It is well documented that propionic acid (PPA) produces behavioral, morphological, molecular and immune responses in rats that are characteristic of autism spectrum disorder in humans. However, whether PPA affects the ultrastructure and synaptic architecture of regions of autistic brain has not been adequately addressed. Earlier we show that single intraperitoneal (IP) injection of PPA (175 mg/kg) produces superficial changes in the spatial memory and learning of adolescent male Wistar rats. However, in neurons, synapses and glial cells of hippocampal CA1 area and medial prefrontal cortex transient (mainly) or enduring alterations were detected. In this study, we used electron microscopic morphometric analysis to test the effect of PPA on different structural parameters of axodendritic synapses of the hippocampus and prefrontal cortex. The animals were treated with a single IP injection of PPA (175 mg/kg). The length and width of synaptic active zone, the area of presynaptic and postsynaptic mitochondria, the distance between presynaptic mitochondria and the synapse active zone, the distance between postsynaptic mitochondria and postsynaptic density and the depth and opening diameter of neuronal porosome complex were evaluated. Our results show that synaptic mitochondria of the hippocampus and prefrontal cortex are the most vulnerable to PPA treatment: in both regions, the area of postsynaptic mitochondria were increased. In general, our results show that even small dose of PPA, which produces only superficial effects on spatial memory and learning is able to alter the synapse architecture in brain regions involved in cognition and autism pathogenesis. Therefore, the microbiome may be involved in the control of neurotransmission in these regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app