Add like
Add dislike
Add to saved papers

Experimental study on municipal solid waste incineration bottom ash as a component of alkali-activated coal gangue-based geopolymer.

This study explores the potential of municipal solid waste incineration bottom ash (MSWI BA) and coal gangue as precursors for alkali-activated cementitious materials (CG-MBA). An examination of the impact of MSWI BA content, NaOH/Na2 SiO3 ratio, liquid-solid ratio, and NaOH concentration on strength and reaction through the application of diverse analytical methodologies. Results demonstrate that CG-MBA offers significant environmental benefits compared to conventional cement. When used as a construction filling material, CG-MBA exhibits a remarkable 74.5 ~ 79.2 wt% reduction in carbon dioxide emissions and 70.6 ~ 77.0 wt% reduction in energy consumption. Additionally, CG-MBA effectively immobilizes heavy metal ions in MSWI BA, with a fixation efficiency exceeding 56.0%. These findings suggest that CG-MBA is a promising sustainable solution for waste management, offering significant environmental benefits while demonstrating effective heavy metal immobilization. This approach contributes to pollution control and promotes environmental sustainability in the construction industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app