Add like
Add dislike
Add to saved papers

Multi-GeV wakefield acceleration in a plasma-modulated plasma accelerator.

Physical Review. E 2024 Februrary
We investigate the accelerator stage of a plasma-modulated plasma accelerator (P-MoPA) [Jakobsson et al., Phys. Rev. Lett. 127, 184801 (2021)0031-900710.1103/PhysRevLett.127.184801] using both the paraxial wave equation and particle-in-cell (PIC) simulations. We show that adjusting the laser and plasma parameters of the modulator stage of a P-MoPA allows the temporal profile of pulses within the pulse train to be controlled, which in turn allows the wake amplitude in the accelerator stage to be as much as 72% larger than that generated by a plasma beat-wave accelerator with the same total drive laser energy. Our analysis shows that Rosenbluth-Liu detuning is unimportant in a P-MoPA if the number of pulses in the train is less than ∼30, and that this detuning is also partially counteracted by increased red-shifting, and hence increased pulse spacing, towards the back of the train. An analysis of transverse mode oscillations of the driving pulse train is found to be in good agreement with 2D (Cartesian) PIC simulations. PIC simulations demonstrating energy gains of ∼1.5GeV (∼2.5GeV) for drive pulse energies of 2.4J (5.0J) are presented. Our results suggest that P-MoPAs driven by few-joule, picosecond pulses, such as those provided by high-repetition-rate thin-disk lasers, could accelerate electron bunches to multi-GeV energies at pulse repetition rates in the kilohertz range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app