Add like
Add dislike
Add to saved papers

Advancing Precision Oncology in Hereditary Paraganglioma-Pheochromocytoma Syndromes: Integrated Interpretation and Data Sharing of the Germline and Tumor Genomes.

Cancers 2024 Februrary 27
Standard methods of variant assessment in hereditary cancer susceptibility genes are limited by the lack of availability of key supporting evidence. In cancer, information derived from tumors can serve as a useful source in delineating the tumor behavior and the role of germline variants in tumor progression. We have previously demonstrated the value of integrating tumor and germline findings to comprehensively assess germline variants in hereditary cancer syndromes. Building on this work, herein, we present the development and application of the INT2 GRATE|HPPGL platform. INT2 GRATE (INTegrated INTerpretation of GeRmline And Tumor gEnomes) is a multi-institution oncology consortium that aims to advance the integrated application of constitutional and tumor data and share the integrated variant information in publicly accessible repositories. The INT2 GRATE|HPPGL platform enables automated parsing and integrated assessment of germline, tumor, and genetic findings in hereditary paraganglioma-pheochromocytoma syndromes (HPPGLs). Using INT2 GRATE|HPPGL, we analyzed 8600 variants in succinate dehydrogenase (SDHx) genes and their associated clinical evidence. The integrated evidence includes germline variants in SDHx genes; clinical genetics evidence: personal and family history of HPPGL-related tumors; tumor-derived evidence: somatic inactivation of SDHx alleles, KIT and PDGFRA status in gastrointestinal stromal tumors (GISTs), multifocal or extra-adrenal tumors, and metastasis status; and immunohistochemistry staining status for SDHA and SDHB genes. After processing, 8600 variants were submitted programmatically from the INT2 GRATE|HPPGL platform to ClinVar via a custom-made INT2 GRATE|HPPGL variant submission schema and an application programming interface (API). This novel integrated variant assessment and data sharing in hereditary cancers aims to improve the clinical assessment of genomic variants and advance precision oncology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app