Add like
Add dislike
Add to saved papers

Self-aspiration sampling design for rapid analyses of volatile organic compounds based on atmospheric pressure chemical ionization/photoionization combined ionization source mass spectrometry.

Development of combined mass spectrometry ionization sources has enabled expansion of the application and scope of mass spectrometry. A novel hybrid ionization system combining vacuum ultraviolet (VUV) and atmospheric pressure chemical ionization (APCI) was constructed. Gaseous samples were self-aspirated into an ionization zone through a capillary by negative pressure, generated by high-speed airflow based on the Venturi effect. Compared with APCI mode alone, the signal-to-noise ratio (S/N) in APCI/VUV mode was increased by about 276-times. To increase the ionization efficiency further, correlated experimental conditions were optimized. Four types of volatile organic compounds (VOCs) were tested to evaluate the performance of the APCI/VUV ion source. Excellent linearity and limit of detection were achieved for compounds in mixed solutions. Quantitative analyses of four VOCs (toluene, cyclohexanone, styrene and ethylbenzene) using APCI/VUV-MS were done, and the relative standard deviations (RSDs) were 1.57%, 6.30%, 4.49% and 8.21%, respectively, indicating that the APCI/VUV ionization source had excellent reproducibility. Our results demonstrated that the developed method was promising for analyzing VOCs as well as being rapid, simple, and easy to operate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app