Add like
Add dislike
Add to saved papers

Structure-based drug design and characterization of novel pyrazine hydrazinylidene derivatives with a benzenesulfonate scaffold as noncovalent inhibitors of DprE1 tor tuberculosis treatment.

Molecular Diversity 2024 March 7
In this study, we present a novel series of (E)-4-((2-(pyrazine-2-carbonyl) hydrazineylidene)methyl)phenyl benzenesulfonate (T1-T8) and 4-((E)-(((Z)-amino(pyrazin-2-yl)methylene)hydrazineylidene)methyl)phenyl benzenesulfonate (T9-T16) derivatives which exert their inhibitory effects on decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) through the formation of hydrogen bonds with the pivotal active site Cys387 residue. Their effectiveness against the M. tuberculosis H37Rv strain was examined and notably, three compounds (namely T4, T7, and T12) exhibited promising antitubercular activity, with a minimum inhibitory concentration (MIC) of 1.56 µg/mL. The target compounds were screened for their antibacterial activity against a range of bacterial strains, encompassing S. aureus, B. subtilis, S. mutans, E. coli, S. typhi, and K. pneumoniae. Additionally, their antifungal efficacy against A. fumigatus and A. niger also was scrutinized. Compounds T6 and T12 demonstrated significant antibacterial activity, while compound T6 exhibited substantial antifungal activity. Importantly, all of these active compounds demonstrated exceedingly low toxicity without any adverse effects on normal cells. To deepen our understanding of these compounds, we have undertaken an in silico analysis encompassing Absorption, Distribution, Metabolism, and Excretion (ADME) considerations. Furthermore, molecular docking analyses against the DprE1 enzyme was conducted and Density-Functional Theory (DFT) studies were employed to elucidate the electronic properties of the compounds, thereby enhancing our understanding of their pharmacological potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app