Add like
Add dislike
Add to saved papers

Electric field effects on neuronal input-output relationship by regulating NMDA spikes.

UNLABELLED: Evidence shows that the dendritic polarization induced by weak electrical field (EF) can affect the neuronal input-output function via modulating dendritic integration of AMPA synapses, indicating that the supralinear dendritic integration of NMDA synapses can also be influenced by dendritic polarization. However, it remains unknown how dendritic polarization affects NMDA-type dendritic integration, and then contributes to neuronal input-output relationship. Here, we used a computational model of pyramidal neuron with inhomogeneous extracellular potentials to characterize the relationship among EF, dendritic integration, and somatic output. Basing on singular perturbation we analyzed the subthreshold dynamics of membrane potentials in response to NMDA synapses, and found that the equilibrium mapping of a fast subsystem can characterize the asymptotic subthreshold input-output (sI/O) relationship for EF-regulated supralinear dendritic integration, allowing us to predict the tendency of EF-regulated dendritic integration by showing the variation of equilibrium mapping under EF stimulation. EF-induced depolarization at distal dendrites receiving synapses plays a crucial role in shifting the steep change of sI/O left by facilitating dendritic NMDA spike generation and in decreasing the plateau of sI/O via reducing driving force. And more effective EF modulation appears at sparsely activated NMDA receptors compared with clustered synaptic inputs. During the action potential (AP) generation, the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization was identified to show their synergetic or antagonistic effect on AP generation, depending on neuronal excitability. These results provided insight in understanding the modulation effect of EF on neuronal computation, which is important for optimizing noninvasive brain stimulation.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11571-022-09922-y.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app