Add like
Add dislike
Add to saved papers

Suppression of NLRP3 inflammasome activation by astragaloside IV via promotion of mitophagy to ameliorate radiation-induced renal injury in mice.

BACKGROUND: Irradiation (IR) promotes inflammation and apoptosis by inducing oxidative stress and/or mitochondrial dysfunction (MD). The kidneys are rich in mitochondria, and mitophagy maintains normal renal function by eliminating damaged mitochondria and minimizing oxidative stress. However, whether astragaloside IV (AS-IV) can play a protective role through the mitophagy pathway is not known.

METHODS: We constructed a radiation injury model using hematoxylin and eosin (HE) staining, blood biochemical analysis, immunohistochemistry, TdT-mediated dUTP nick end labeling (TUNEL) staining, ultrastructural observation, and Western blot analysis to elucidate the AS-IV resistance mechanism for IR-induced renal injury.

RESULTS: IR induced mitochondrial damage; the increase of creatinine (SCr), blood urea nitrogen (BUN) and uric acid (UA); and the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome and apoptosis in renal tissue. AS-IV administration attenuated the IR-induced MD and reactive oxygen species (ROS) levels in the kidney; enhanced the levels of mitophagy-associated protein [PTEN-induced putative kinase 1 (PINK1)], parkin proteins, and microtubule-associated protein 1 light 3 (LC3) II/I ratio in renal tissues; diminished NLRP3 inflammasome activation-mediated proteins [cleaved cysteinyl aspartate-specific proteinase-1 (caspase-1), interleukin-1β (IL-1β)] and apoptosis-related proteins [cleaved caspase-9, cleaved caspase-3, BCL2-associated X (Bax)]; reduced SCr, BUN, and UA levels; and attenuated the histopathological alterations in renal tissue. Conversely, mitophagy inhibitor cyclosporin A (CsA) suppressed the AS-IV-mediated protection of renal tissue.

CONCLUSIONS: AS-IV can strongly diminish the activation and apoptosis of NLRP3 inflammasome, thus attenuating the renal injury induced by radiation by promoting the PINK1/parkin-mediated mitophagy. These findings suggest that AS-IV is a promising drug for treating IR-induced kidney injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app