Add like
Add dislike
Add to saved papers

Comparative light and scanning electron microscopic studies of the lenses in the insectivorous bat (Pipistrellus kuhlii) and Egyptian fruit bat (Rousettus aegyptiacus).

Bats have the ability to fly without eye application in the darkness. In this study, we aimed to characterize the functional and structural acclimations of the lenses of two common bats with a various lifestyle in the Egyptian environment: the insectivorous bat (IB) (Pipistrellus kuhlii) and Egyptian fruit bat (FB) (Rousettus aegyptiacus). From each species, seven lenses were extracted from adult eyes. The scanning electron microscopic (SEM) and light microscopic examination of the lens were carried out. FB lenses were made up primarily of fiber cells and sheets, which were encapsulated by a thin collagenous capsule and covered by single epithelial layer anteriorly. On the other hand, the IB lens had two poles and was visibly oval shaped. Both lenses had epithelial cells of the same cuboidal form that were subjected to continuous division and differentiation into new fiber cells at the center. SEM revealed that the normal FB lens had regularly organized shells of fiber cells of intact lens fibers which were connected by membrane interdigitations with different shapes mainly ball-and-socket junctions through the superficial cortical fiber cells. The IB lens was composed of parallel, evenly spaced fibers with various types of interdigitations between fibers that can be seen and increased close to the middle region revealing tiny bumps along the scrubby portions and sockets and balls in the center of the wide portions. Near the center of both lenses, there were large interlocking paddles with little and lengthy protrusions along their short sides. In conclusion, our study discovered several ultrastructural and structural variations among the investigated species. The detection of specialized membrane interdigitations with different shapes protruding from the lens fiber sheets is considered the most characteristic of the FB lens. RESEARCH HIGHLIGHTS: FB lens has more organized sheets of fibers parallel to each other than IB lens. Different shapes of interdigitations protruded from the FB lens have been detected. Interlocking paddles, balls, and sockets with tongue-like fiber flabs are characteristic to FB lens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app