Add like
Add dislike
Add to saved papers

Molecular Dynamics Simulation Study on the Occurrence of Shale Oil in Hybrid Nanopores.

The molecular dynamics simulation was used to simulate the influence of the composite wall stacking effect on shale oil occurrence. The kerogen-illite heterogeneous wall pore model was established to study the effects of temperature, pore size, and wall component ratio on the adsorption ratio and diffusion capacity of shale oil. The calculation results show that the fluid density distribution in the hybrid nanopore is not uniform. When the pore size increases, the proportion of the first adsorption layer to the total adsorption amount decreases rapidly, and the phenomenon of the "solid-like layer" of shale oil in small pores is more obvious. In addition, increases in temperature have little effect on the density peak of the first adsorption layer. With increases in organic matter content in the shale pore model, the diffusion coefficient of fluid decreases gradually, along with adsorption capacity. The influence of the irregular arrangement of kerogen molecules on the adsorption of shale oil is greater than the influence of surface roughness caused by illite on the adsorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app