Add like
Add dislike
Add to saved papers

Progression of renal damage and tubular regeneration in pregnant and non-pregnant adult female rats inoculated with a sublethal dose of Shiga toxin 2.

Microbial Pathogenesis 2023 December 11
BACKGROUND: Shiga toxin-producing Escherichia coli is the main cause of post-diarrheal hemolytic uremic syndrome (HUS) which produces acute kidney injury mainly in children, although it can also affect adults. The kidneys are the organs most affected by Shiga toxin type 2 (Stx2) in patients with HUS. However, previous studies in pregnant rats showed that a sublethal dose of Stx2 causes severe damage in the uteroplacental unit and induces abortion, whereas produces mild to moderate renal damage. The aim of the present work was to study the progression of renal injury caused by a sublethal dose of Stx2, as well as renal recovery, in pregnant and non-pregnant rats, and to investigate whether pregnancy physiology may affect renal damage progression mediated by Stx2.

METHODS: Renal function and histopathology was evaluated in pregnant rats intraperitoneally injected with a sublethal dose of Stx2 (0.5 ng/g bwt) at the early stage of gestation (day 8 of gestation), and results in these rats were compared over time with those observed in non-pregnant female rats injected with the same Stx2 dose. Hence, progression of cell proliferation and dedifferentiation in renal tubular epithelia was also investigated.

RESULTS: The sublethal dose of Stx2 induced abortion in pregnant rats as well as a significant more extended functional and histological renal injury in non-pregnant rats than in pregnant rats. Stx2 also caused decreased ability to concentrate urine in non-pregnant rats compared to their controls. However, renal water handling in pregnant rats was not altered by Stx2, and was significantly different than in non-pregnant rats. The greatest renal injury in both pregnant and non-pregnant rats was observed at 4 days post-Stx2 injection, and coincided with a significant increase in tubular epithelial proliferation. Expression of mesenchymal marker vimentin in tubular epithelia was consistent with the level of tubular damage, being higher in non-pregnant rats than in pregnant rats. Recovery from Stx2-induced kidney injury was faster in pregnant rats than in non-pregnant rats.

CONCLUSIONS: Adaptive mechanisms developed during pregnancy such as changes in water handle and renal hemodynamic may contribute to lessen the Stx2-induced renal injury, perhaps at the expense of fetal loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app