Add like
Add dislike
Add to saved papers

Kindlin-2 regulates colonic cancer stem-like cells survival and self-renewal via Wnt/β-catenin mediated pathway.

Cellular Signalling 2024 January
BACKGROUND: Cancer Stem Cells (CSCs) have emerged as a critical mediator in recurrence and resistance in cancers. Kindlin-isoform (1 and 2) binds with cytoplasmic β-tail of integrin and are essential co-activators of integrin function. Given their important function in regulating cancer hallmarks such as cell proliferation, invasion, migration, and metastasis, we hypothesize that it might play a critical role in CSC growth, survival, and self-renewal of colon cancer.

MATERIALS AND METHODS: Using knockdown approaches, we inhibited Kindlin-2 expression in HCT116 and HT29 colon cancer cells. Extreme limiting dilution and self-renewal assay were performed to measure the role of Kindlin in colonic CSC. Standard methods such as qRT-PCR and western blotting were carried out to understand the signaling cascade by which Kindlin regulates CSC marker expression and downstream targets.

RESULTS: Our data show isoform-specific upregulation of Kindlin-2 in colonic CSCs. The silencing of Kindlin-2 reduces colonosphere formation, decreases CSC size, and self-renewal marker genes such as CD-133, CXCR-4, LGR-5, and C-MYC. Kindlin-2 silencing reduces colonosphere proliferation, invasion, and migration of colonic CSCs. Mechanistically, Kindlin-2 silencing reduces the expression, and nuclear localization of β-catenin, and decreases β-catenin target genes such as C-MYC, cyclin D1, DKK-1, and Snail-1.

CONCLUSION: Our study delineates the isoform-specific activity of Kindlin-2 in regulating Colonic CSC. Isoform-specific targeting of Kindlin-2 may be a novel strategy to tackle this devastating disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app