Add like
Add dislike
Add to saved papers

Upregulation of Pin1 contributes to alleviation of cognitive dysfunction in diabetic mice.

Brain and Behavior 2023 November 22
OBJECTIVE: This study aimed to explore the molecular mechanism underlying the role of Pin1 in cognitive dysfunction in diabetic mice.

METHODS: Using a streptozotocin-induced diabetic mouse model, an adeno-associated virus carrying the Pin1 gene was used to upregulate Pin1 expression in the hippocampus of diabetic mice. Animal behavior tests and molecular biology techniques were further used to explore the role of Pin1 in cognitive dysfunction in diabetic mice.

RESULTS: Our study demonstrated that upregulation of Pin1 expression increased the phosphorylation of AKT and insulin receptor substrate 1 downstream signaling molecules of the IR-IGF1R pathway, increased the phosphorylation of GSK-3β, and concomitantly decreased the phosphorylation of Tau in the hippocampus of diabetic mice, thereby improving the ultrastructural pathology of the hippocampus and further alleviating diabetes-related cognitive impairment.

CONCLUSION: Pin1 can improve cognitive dysfunction in diabetic mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app