Add like
Add dislike
Add to saved papers

Design and optimisation of an Intra-Aortic Shrouded rotor axial pump.

Journal of Biomechanics 2023 November 5
Undesirable side effects in patients with a LVAD (Left Ventricular Assist Device) pump fitted include blood damage, thrombosis, blood traumatisation, and End-Organ Disfunctions. These side effects have generally been attributed to the high wall shear stresses and the induced turbulent flow. In this study, we introduce a novel design to address these effects by lowering the rotational speed and providing an optimum flow path design to minimise blood damage. We present an initial scheme for a new Intra-Aortic Shrouded Rotary Axial Pump and develop a sequence of pump geometries, for which the Taguchi Design Optimisation Method has been applied. We apply CFD tools to simulate the pressure rise, pump performance, hydraulic efficiency, wall shear stress, exposure time and mass flow rate. A prototype pump has been tested in a mock cardiovascular circuit using a water-glycerol solution. The optimum design delivered the desired pressure/mass flow rate characteristics at a significantly low rpm (2900 rpm). As a result, the estimated blood damage index is low, matching the design requirements. The theoretical performance was matched by experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app