Add like
Add dislike
Add to saved papers

The hydrodynamics of jet propulsion swimming in hatchling and juvenile European common cuttlefish Sepia officinalis, Linnaeus (1758).

Cuttlefish swim using jet propulsion, taking a small volume of fluid into the mantle cavity before it is expelled through the siphon to generate thrust. Jet propulsion swimming has been shown to be more metabolically expensive than undulatory swimming, which has been suggested to be due to the lower efficiency of jet propulsion. The whole cycle propulsive efficiency of cephalopod molluscs ranges from 38-76%, indicating that in some instances jet propulsion can be relatively efficient. Here, we determined the hydrodynamics of hatchling and juvenile cuttlefish during jet propulsion swimming to understand the characteristics of their jets, and whether their whole cycle propulsive efficiency changes during development. Cuttlefish were found to utilise two jet types: isolated jet vortices (termed jet mode I) and elongated jets (leading edge vortex ring followed by a trailing jet; termed jet mode II). The use of these jet modes differed between the age classes, with newly hatched animals nearly exclusively utilising mode I jets, while juveniles showed no strong preferences. Whole cycle propulsive efficiency was found to be high, ranging from 72-80%, and did not differ between age-classes. During development, Strouhal number decreased as Reynolds number increased, which is consistent with animals adjusting their jetting behaviour in order to maximise whole cycle propulsive efficiency and locomotor performance. While jet propulsion swimming can have a relatively high energetic cost, in cuttlefish and nautilus, both neutrally buoyant species, the whole cycle propulsive efficiency is actually relatively high.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app