Add like
Add dislike
Add to saved papers

Bacteriophage populations mirror those of bacterial pathogens at sites of infection.

MSystems 2023 August 2
Bacteriophages, viruses that parasitize bacteria, are known to be abundant at sites of bacterial colonization, but the relationship between phages and bacteria at sites of infection is unclear. Bacteriophages are highly specific to their bacterial host species, and so we hypothesize that phage populations would mirror those of bacterial pathogens within infected tissues. To test this, here we study publicly available cell-free DNA (cfDNA) generated using next-generation sequencing of infected bodily fluids, including urine, joint fluid, peritoneal fluid, bronchoalveolar lavage fluid, cerebrospinal fluid, and abscess fluid, as well as uninfected control samples. These were analyzed using a computational pipeline for identifying bacteriophage sequences in cfDNA. We find that bacteriophage sequences are present in both infected and uninfected bodily fluids and represent a variety of bacteriophage morphologies and bacterial hosts. Additionally, phages from Escherichia coli , Streptococcus , and Staphylococcus aureus are overrepresented both in terms of proportion and diversity in fluids infected with these same pathogens. These data indicate that phages reflect the relative abundance of their bacterial hosts at sites of infection. Bacteriophage sequences may help inform future investigative and diagnostic approaches that utilize cell-free DNA to study the microbiome within infected tissues. IMPORTANCE Bacteriophages are an active area of investigation in microbiome research, but most studies have focused on phage populations at sites of bacterial colonization. Little is known about bacteriophage ecology at sites of active infection. To address this gap in knowledge, we utilized a publicly available data set to study bacteriophage populations in cell-free DNA collected from sites of infection. We find that phages reflect the relative abundance of their bacterial hosts at sites of infection. These studies may lead to future investigative and diagnostic approaches that incorporate phages as well as bacterial cell-free DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app