Add like
Add dislike
Add to saved papers

An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients.

Bioengineering 2023 June 22
The complex pathobiology of lung cancer, and its spread worldwide, has prompted research studies that combine radiomic and genomic approaches. Indeed, the early identification of genetic alterations and driver mutations affecting the tumor is fundamental for correctly formulating the prognosis and therapeutic response. In this work, we propose a radiogenomic workflow to detect the presence of KRAS and EGFR mutations using radiomic features extracted from computed tomography images of patients affected by lung adenocarcinoma. To this aim, we investigated several feature selection algorithms to identify the most significant and uncorrelated sets of radiomic features and different classification models to reveal the mutational status. Then, we employed the SHAP (SHapley Additive exPlanations) technique to increase the understanding of the contribution given by specific radiomic features to the identification of the investigated mutations. Two cohorts of patients with lung adenocarcinoma were used for the study. The first one, obtained from the Cancer Imaging Archive (TCIA), consisted of 60 cases (25% EGFR, 23% KRAS); the second one, provided by the Azienda Ospedaliero-Universitaria 'Ospedali Riuniti' of Foggia, was composed of 55 cases (16% EGFR, 28% KRAS). The best-performing models proposed in our study achieved an AUC of 0.69 and 0.82 on the validation set for predicting the mutational status of EGFR and KRAS, respectively. The Multi-layer Perceptron model emerged as the top-performing model for both oncogenes, in some cases outperforming the state of the art. This study showed that radiomic features can be associated with EGFR and KRAS mutational status in patients with lung adenocarcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app