Add like
Add dislike
Add to saved papers

GOx-Powered Janus Platelet Nanomotors for Targeted Delivery of Thrombolytic Drugs in Treating Thrombotic Diseases.

Low efficiency of targeting and delivery toward the thrombus site poses challenges to using thrombolytic drugs. Inspired by the biomimetic system of platelet membranes (PMs) and glucose oxidase (GOx) modification technologies, we develop a novel GOx-powered Janus nanomotor by asymmetrically attaching the GOx to polymeric nanomotors coated with the PMs. Then the PM-coated nanomotors were conjugated with urokinase plasminogen activators (uPAs) on their surfaces. The PM-camouflaged design conferred excellent biocompatibility to the nanomotors and improved their targeting ability to thrombus. The Janus distribution of GOx also allows the uneven decomposition of glucose in biofluids to produce a chemophoretic motion, increasing the drug delivery efficiency of nanomotors. In addition, these nanomotors are located at the lesion site due to the mutual adhesion and aggregation of platelet membranes. Furthermore, thrombolysis effects of nanomotors are enhanced in static and dynamic thrombus as well as in mouse models. It is believed that the novel PM-coated enzyme-powered nanomotors represent a great value for thrombolysis treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app